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Abstract—A study of the steady free convection flow along a semi-infinite vertical flat plate which is placed

in a saturated porous medium and at an arbitrary distance 4 above a horizontal wall is performed. The

first- and second-order boundary layer equations and outer inviscid flow equations are studied to find the

effects of large, but finite, values of the Rayleigh number. Results are obtained for the two cases in which

the flat plate is (i) isothermal and (ii) uniform flux. It is found that the first-order boundary layer solutions

overestimate the local Nusselt number except for the uniform flux plate for distances along the plate less
than about 0.4d.

1. INTRODUCTION

PrOBLEMS of natural convection in porous media have
become of considerable interest during the last two
decades. This has been mainly due to its wide engin-
eering applications such as geothermal energy
resource and oil-reservoir modelling and in the analy-
sis of insulating systems. An excellent review of these
types of problems can be found in Bejan [1].

Much work in this area has been devoted to the
analytical studies of higher-order boundary layer
effects from heated surfaces based on the method of
matched asymptotic expansion. Cheng and Hsu [2]
and Joshi and Gebhart [3] have obtained higher-order
corrections for the free convection boundary layer
flow adjacent to a semi-infinite vertical flat plate which
is embedded in a saturated porous medium. This flow
configuration has been recently extended by Daniels
and Simkins [4] who investigated the flow in a corner
which is formed by a uniformly heated vertical surface
and a second, thermally insulated wall which meets
the vertical wall at the origin. Further Hsu and Cheng
[5] have considered free convection about a semi-infi-
nite inclined heated surface which intercepts with
another unheated surface embedded in a porous
medium. The same method was applied by Riley and
Rees [6] to the problem of non-Darcy natural con-
vection from an arbitrarily inclined heated surface in
a porous medium.

The problem considered here is the steady free con-
vection flow along a semi-infinite vertical flat plate
which is placed at a distance d above an insulated
horizontal infinite wall which is immersed in a satu-
rated porous medium. In spite of its relevance to many

practical situations, this configuration has not been
previously analysed. The only related work to this
problem is that performed by Martynenko et al. [7]
who investigated the situation of a viscous fluid. We
shall consider two natural convection flows separ-
ately, namely, (i) an isothermal flat plate and (ii) a
uniform flux flat plate. Both cases are analysed by
the method of matched asymptotic expansions. The
perturbation parameter is the inverse of the square
root of the Rayleigh number which is assumed to
be large in order to ensure the existence of the free
convection boundary layer. It is found that the
second-order boundary layer equations reduce to a
set of non-similar equations. These equations have
been solved numerically for small and large values of
the coordinate along the plate in order to provide
descriptions of the velocity and temperature fields.
These limiting solutions are matched using a numeri-
cal procedure to solve the full governing parabolic
partial differential equations. It was noted that the
outer flow and the boundary layer flow patterns are
considerably different in the two problems considered
in this paper. This work is analogous to the viscous
flow induced by a horizontal line source of heat which
is bounded by a horizontal infinite wall as studied by
Riley [8] and Afzal [9].

2. PHYSICAL MODEL AND ANALYSIS

The configuration considered is that of a semi-infi-
nite vertical flat plate which is embedded in a saturated
porous medium and placed at a distance 4 above an
infinite horizontal wall (see Fig. 1). The vertical plate
is kept at a constant temperature, T,,, which is higher
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NOMENCLATURE
d shortest distance from the plate to the Greek symbols
horizontal wall o equivalent thermal diffusivity
g acceleration due to gravity B coefficient of thermal expansion
k thermal conductivity of the porous g perturbation parameter
medium n similarity variable
K permeability of the porous medium 0 dimensionless temperature
Nu, local Nusselt number v kinematic viscosity
Gw local heat transfer rate v dimensionless stream function
Ra, local Rayleigh number W dimensionless outer stream function.
T, T, surface and ambient temperatures
(x,y) dimensionless coordinates
Y dimensionless inner coordinate.
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Fic. 1. Physical model and coordinate system.

than that of the temperature of the ambient fluid-
porous medium, T, or at a constant flux, ¢, whilst
the horizontal wall is maintained at the constant tem-
perature T,

Cartesian coordinates (%, ) are used in the sub-
sequent analysis in which X and 7 are measured along
and perpendicular to the plate, respectively. The ori-
gin of the coordinate system is taken to coincide with
the leading edge of the plate. We assume that the
thermal and fluid-porous medium properties to be
constant and neglect the viscous dissipation. Under
steady-state conditions the mass, momentum and
energy equations, with the Darcy-Boussinesq
approximation describing the natural convection flow
along the vertical plate can easily be obtained. These
equations for the stream function ¢ and the tem-
perature 6 can be written in non-dimensional form as
2]

Vet =8, M
SZ(BXX-}— eyy) = GX‘I/y_ Hylllx (2)

where £ = Ra™'? and Ra denotes the Rayleigh num-
ber which is based on the distance d, Ra = gBKATd/
(av). In equations (1) and (2) the streamfunction is
non-dimensionalized by gBKATd/v, the lengths by d
and the temperature by AT where

for the isothermal plate

Tw—To,
AT = { 3

¢.d/{k Ra'’?), forthe uniform flux plate.

The associated boundary conditions of the plate
described above take the following form

¥, =0, 6 =1 (constant

temperature)
or at y=0, x=0 (4a)
e, = —1 (constant
beat flux)
¥,—0,0-0 as y— oo, x20 (4b)
V,=0=y.=0, aty=0,x<0. (4)

In the limit of very large Rayleigh number, or small
g, the governing equations (1) and (2) reduce to the
boundary-layer equations, i.e. the first-order inner
problem, and these equations have been solved pre-
viously by Cheng and Minkowycz [10]). The solution
for large, but finite, values of the Rayleigh numbers
is not found by means of a standard perturbation
analysis which assumes a power-series expansion in ¢
in both the inner and outer regions.

2.1. The inner expansion
The stream and temperature functions in the
boundary layer are postulated as
Y(x.y.8) = elfr {x, V) Hedolx, Y)+hot] (5a)
8(x,y,8) = 6,{x, Y)+&0,(x, )+hot. (5b)
where the inner variable, Y, is
Y=yle ©)

(the possibility of eigenfunctions will be considered
later). Substitution of expansions (5) into equations
(1) and (2) and collecting up terms of equal order in
¢ will result in the perturbation equations. The first-
order perturbation equations resulting from this
process are

(7a)
(7b)

e Wiy =0y

91)'}' = GlexY‘oly‘lflx
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with the boundary conditions
U‘le(xa {)) = 09 Bl(x, O) =1
Yiy(x,0) >0, 8,(x,0)—0.

(8a)
(8b)

We note that equations (7) are the boundary layer

equations found by Cheng and Minkowycz [10] for

the free convection along a semi-infinite vertical

heated vertical plate embedded in a porous medium.
The second-order perturbation equations are

(9a)
(%9b)

e'l Yoy =0y
02)’y = 9\.rlf/2}'+92_r'ﬁly—Qlylllzx“ozyfﬁxx

with boundary conditions
#a2{x,0)=0and 0,(x,0) =0 or 0,,(x,0) =0
(10)

and ¥,,{x, c0} and f,(x, 0) match with the outer
expansions which remain to be determined.

2.2. The outer expansion

In the outer region the flow is irrotational and iso-
thermal, that is 8 = 0, and thus the following expan-
sion for the stream function is assumed

Y(x, v,6) = el (x, 1) +efalx, ) +hoot]  (11)
where i, satisfies the Laplace equation
A%, =0 (12)

with the boundary condition ,(x, 0) that matches
with the inner expansion at the edge of the boundary
layer, and the infinity condition

¥, (x,00) = 0. (13)

Solutions of equations (7)-(13) will provide a com-
plete description of the thermal and flow fields to the
order ¢

2.3. The first-order inner solution
The introduction of the similarity transformation

Yy = xA20 ), 8,30 = X9 () (14a,b)

where

= Yx@- 02

15)

as suggested by Cheng and Minkowycz [10] allows
equations {7) to be reduced to the set of ordinary
differential equations

Ji=g: (16a)
A+1
g7+ %'zflg,l_'lfl’gl =0 (16b)
subject to the boundary conditions
Fi(0) =g,(0)—1 = g,(o0) = 0. an

In the above 1 = 0 corresponds to the constant plate
temperature problem whilst 1 = 1/3 corresponds to
the constant heat flux at the plate. Here primes denote
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derivatives with respect to #. The problem for (f,,g,)
has been previously solved numerically by Cheng and
Hsu [2]. These calculations have again been performed
and we find that

constant plate temperature

a, = f1(o0) = 1.6161

(18a)
g1(0) = —0.4438;
constant heat flux at the plate
b, = fi{0) = 1.3016
1 = fi(e0) (18b)

g:(0) = —0.6776.

2.4. The first-order outer solution
In the outer region the first-order stream function,

¥y, is governed by equation {12} with the matching

condition

Si(oo)x W2,

~ x=0 (19a)
¥i(x,0) = {0’ —l<x<0 (19b)

and the infinity condition (13). An additional require-
ment is that the bounding horizontal wall is a stream-
line, as no boundary layer is formed on this wall, and
it may be expressed as

Jix=1y=0, [y=0. 20y

An analytical solution to equation (12) subject to
boundary conditions (13), (19) and (20) can be
obtained, for both the cases under consideration here,
of the form

lf;l sin (é—;:—ln) =f1(oo}{(x2+y2)(“‘)/“
x sin [(1‘2% 1)) (Tt— tan~! ﬁ)]_ [(x+2)2+y2]“+ /4

x sin [(A; D tan™! (xiZ)?I} 21

From now on we will consider separately the cases
of the isothermal plate and the uniform flux plate,
respectively.

(i) Isothermal plate. The matching of the inner and
the outer expansions requires that

1 x 172
Yarlx, 00) = —sax” ”2(}1’,‘2) (22a)
By(x,0) =0 (22b)

which suggests a solution of equations (9) in the inner
region, of the form

'/’2 = F(x’ ’1), 92 =Xx" I/ZG(x, ?']) (23a,b)
Thus the governing equations become
F'=¢ (24a)

R | ., ,0G6G | OF
G +§(qu) —-x<f: a;’*%a) (24b)
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which have to be solved subject to the boundary con-
ditions

F(x,0) = G(x,0) =0 (252)
1/2
F'(x, 00) = —%al <XL+2> . G(x,0) = 0.
(25b,c)

We see that equations (24) are non-similar and
therefore their solution is obtained in terms of two
coordinate expansions which are valid for small and
large values of x, respectively.

(a) Small values of x. For x « 1, the formal expan-
sion of F'(x, o) is

F’(x, OO) — z .Anxn+ 172

n=0

(26)

where

a, r'(1/2)

An= = ar 3y T'(1+n)(1/2—n)

@7

and I' is the Gamma function. Guided by the expan-
sion (26), we write

F= ¥ Fmee (282)
G= 3 G (28b)

n=90
so that the system of partial differential equations (24)

can be reduced to the system of ordinary differential
equations

F,/'=aG, (29a)

G, +3/,G,—nfiG,+(+n)giF,=0. (29b)

Boundary conditions (25) become, on using
expressions (26) and (27)

F0)=G,0)=0 (30a)

F(0) = A,, G,0)=0. (30b,c)

(b) Large values of x. For x >» 1, the asymptotic
form of F'(x, o0) may be expressed in inverse powers
of x as

F'(x,0) = —3a,+0(1/x)’ @31

and therefore the asymptotic forms for Fand G are
F=Fm+0(1/x) (32a)
G =Gm+0(1/x) (32b)

as x — 00. On substitution of expressions (32) into
equations (24) and equating order one terms gives

Fr=G (33a)
G"+i(fiGy =0 (33b)
with the boundary conditions
FO)y=G0)=0 (34a)
F(o)= —1a, G(x)=0. (34b,c)
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It is observed that equations (33) and boundary
conditions (34) are identical to those derived by Dan-
iels and Simkins [4] in their study of free convection
flow in a corner which is embedded in a porous
medium. The solution of equations (33) subject to the
boundary condition (34) is

F+ —lay, G=o0. (35)

(c) Moderate values of x. A standard Crank—Nicolson
type solver is used to solve the parabolic partial
differential equations (24) subject to boundary con-
ditions (25). The method starts with the solution
which is valid for small values of x and marches in x
until the asymptotic solution for large x is obtained.

(ii) Uniform flux plate. The solution procedure for
this problem, in essence, parallels that of the preceding
case. Now, from equation (21), we obtain

e 0) = x5, cot [5) 1-2(=22)
l//]y(x’ )‘_gx | CO 3 x+2 .

(36)

It is observed, from expression (36), that the dis-
placement speed becomes zero at x = x, where x, is
given by

x, = 2/7. (37

Therefore, the nature of the flow at the edge of the
boundary layer changes depending upon the value of
x. For x < 2/7 the displacement speed is positive ; at
x = 2/7, the displacement speed is zero and the first-
order contribution vanishes; for x > 2/7, the dis-
placement speed is negative.

As before, the second-order boundary layer equa-

tions (9) in terms of the variable
l//2 = ﬁ(xs I’[), 02 =X IBGA(X» 7]) (383’b)

reduce to equations similar to equations (24) and are
therefore not presented here. However, the functions
Fand G take the following forms:

for small values of x

F=fm+ Y Fpx*1? (39a)
n=0
G=g:m+ Y, Gx+'"? (39b)
n=90
where F’(x, c0) behaves as
F'(x,0)= B+ Y Ax"*'? (40)
n=0
with
2 n
B, =§b2 cot <§> (41a)
i- 2 m\ 1 r(1/3) _
n = T 300 3 T T A+ )L (1/3—n)
(41b)
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for large values of x

F=Fm+0(1/x) (42a)
G =Gm+o(/x (42b)

where
F'(x,00) = —B,+0(1/x). (43)

Equations for Fand G are identical to the equations
for f, and g, which have to be solved for the same
boundary conditions except for a different sign in
conditions at y = oo. Thus it is concluded that

£10) = —F(0) = 01677, g,(0) = —G = —0.3333.
(44)

For moderate values of x a numerical procedure,
similar to that described for the isothermal plate prob-
lem, is again employed.

In order to complete the solution of this problem
we must search for the existence of the eigenfunctions
which identically satisfy the boundary conditions at
# = 0 and o0, But, as in the problem of free convection
along a single-semi-infinite vertical plate which is
embedded in a porous medium, the eigensolutions
associated with equations (5) introduce a term which
lies between the second- and third-order approxi-
mation in each of the series. It is therefore concluded
that the boundary layer expansions (5) are appro-
priate up to order £°.

3. RESULTS AND DISCUSSION

The primary importance in this problem is the fluid
flow pattern and the variation of the Nusselt number
with the distance along the plate. A set of streamlines,
deduced from expression (21), corresponding to both
the isothermal plate and the uniform flux plate are
shown in Figs. 2 and 3, respectively. The effect of the
solid horizontal boundary at x = —1 is to prevent
fluid being entrained into the boundary layer from
the region x < —1 and although schematically the
streamlines are similar in the two problems they are
very different in detail.

1619

In the case of the uniform flux plate it is observed
from Fig. 3 that ¢,,, at y = 0, x > 0, is negative near
x = 0 but becomes positive as x increases. The tran-
sition from negative to positive values occurring at
x = x, = 2/7, as predicted by equation (37). In the
isothermal plate case Fig. 2 shows that ¥,,, at y = 0,
x> 0, is always positive as indicated by equation
(22a). Further, since the flux of fluid entering the
boundary layer is larger for the uniform flux plate
than the isothermal plate then the strength of the flow
outside the boundary layer must be greater. This is
confirmed by an examination of expression (21).
Therefore the fluid, for the uniform flux plate, has to
enter the boundary layer much more rapidly than
for the isothermal plate problem. This results in the
streamlines being more horizontal for the uniform
flux plate than for the isothermal plate. This result is
confirmed by the streamline patterns in Figs. 2 and 3.

The local Nusselt number for small values of x can
be expressed as

for (i): Nu,/Ral’* =0.4438
—Ra7"? Y GO)x"*'?+O(Ra; ") (453)
n=0
Ra;'?
for (i): Nu/(Nudpr = 14+ —>
@) /(Nus.L 7.

X [gz(O)-&- i G0 ”3]4— O(Ra;'y (45b)

n=0

where g(0) = ~0.6776 and ¢,(0) = —0.3333. In the
above (Nu,)y, denotes the local Nusselt number for
the first-order boundary layer solution. The results to
n = n, = 14 terms for G;(0) and G,(0) are given in
Table 1.

For large values of x, the results for the leading
terms in the expansions are

Nu,/Ral’* = 0.4438 4 O(Ra; ")

for (i):

(46a)

=i

v

77 Vv

FiG. 2. The streamlines associated with the outer flow for an isothermal plate.
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Fi1G. 3. The streamlines associated with the outer flow for a uniform flux plate.

Table 1. Second-order solution for small x

n A4, G.(0) A, G,(0)
0 —5.7139x 107} 21477 x 107! —7.9528 x 107! 47933 x 1071
1 1.4285%x 107! —7.2668 x 1072 1.3253 x 107! —6.3253x 1072
2 ~5.357x107?2 2.8271x 1072 —4.4182x 1072 1.7741 x 1072
3 2.2320x 1072 —1.1785x 10°* 1.7182x 1072 —6.0274x 107°
4 —9.7649x 107 S.1174x 1077 —7.1592x 1073 2.2498 x 107}
5 43942 %1073 —2.2825x1073 3.1023 x 1073 —8.8907x 107
6 —2.0140x 1073 1.0373 x 1073 —1.3788 x 1073 3.6512x 1074
7 9.3508 x 10~ * —4.7789 x 10~* 6.2375x 104 —1.5417x 10~*
8 —4.3832x 107 2.2248 x 1074 —2.8588x10~* 6.6477x107°
9 2.0698 x 10~ ¢ —1.0443x 1074 1.3235x 1074 —2.9139%x107°
10 —9.8137x107° 49338x107° —6.1765x 107° 1.2942%x 1073
11 4,6924x10°° —2.3435x107° 29011 x107? —5.8105%x10™°¢
12 —2.2484x107° 1.1182x 10~ —1.3700 x 10~° 2.6324x107°
13 1.0810x 1077 —5.3551x107¢ 6.4985x10~¢ —1.2017x10"¢
14 —~5.2119x 1078 2.5729x 107% —3.0945x10°¢ 5.5219x 1077
for(it): Nu/(NuJs.. The full numerical solution gives excellent agreement
with the series solution (45a) for x < 1.5.
A Figure 5 shows the variation of the second-order
GO .
=14 — © Ra; * 4+ O(Ra; ") boundary layer correction to the local Nusselt
g1 number, (Nu,/(Nu)g, — 1)Ral?, as a function of the
i . distance along the plate for the uniform flux plate. As
= 1-0.4919Ra; "+ O(Ra;'). (46b)  in the case of isothermal plate problem it is observed

Figure 4 shows the variation of the second-order
boundary layer correction to the local Nusselt
number, (Nu,/Ral/*—0.4438)Ra}/?, as a function of
the distance along the plate, x, for the isothermal plate
problem. For large values of x the complete numerical
solution tends to the asymptotic value of zero as pre-
dicted by equation (46a). At small values of x the
effects of taking an increasing number of terms in
expansion {45a) is shown. Clearly we do not expect
the asymptotic solution for small values of x to be
valid for x > 2 because of the use of expansion (26).

that the complete numerical solution matches the
asymptotic solutions {45b) and (46b). Similar obser-
vations as were made above for the isothermal plate
also apply in this case.

It is concluded that the first-order boundary layer
solution always overestimates the Nusselt number in
the case of the isothermal plate. However, for the
uniform flux plate the first-order boundary layer solu-
tion underestimates the Nusselt number for x < 0.4
and overestimates it for x = 0.4.

Higher-order corrections to the boundary layer
solutions can easily be obtained using the method of
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FIG. 4. The variation of (Nu,Ra}’? —0.4438)Ra)/? as a function of x for the isothermal plate. The number
of terms used in series (45a) being 0, 14, 12, 10, 8, 6, 4 and 2 for curves going to plus infinity, reading from
left to right and being 13, 11,9, 7, 5, 3 and 1 for curves going to minus infinity, again reading from left to

right.
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FiG. 5. The variation of ((Nu,/Nu,)s; — 1)Ra, as a function of x for the uniform flux plates. The number
of terms used in series (45b) being 13, 11,9, 7, 5, 3 and 1 for curves going to plus infinity, reading from
left to right, and being 14, 12, 10, 8, 6, 4, 2 and 0 for curves going to minus infinity, reading from left to

right.

matched asymptotics as described above. However, in
the non-porous media situation this is not possible as
a viscous boundary layer forms on the horizontal
surface and this must also be analysed. Also due to
the formation of the boundary layer a jet will form
near y =0, —1 < x< 0 which will then interact with
the higher-order corrections in the boundary layer on
¥ = 0, x > 0. In the porous media problem no viscous
or thermal boundary layers exist on the horizontal
boundary at x = —1 and this boundary is only play-
ing a passive role in that it only serves as a boundary
condition for the outer inviscid flow.
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CONVECTION NATURELLE SUR UNE SURFACE VERTICALE SEMI-INFINIE
LIMITEE PAR UNE PAROI HORIZONTALE DANS UN MILIEU POREUX

Résumé—On étudie la convection naturelle permanente le long d’une plaque plane, verticale semi-infinie

qui est placée dans un milieu poreux a une distance arbitraire d au-dessus d’une paroi horizontale. Les

équations de couche limite de premier et de second ordre et les équations de I’écoulement non visqueux

externe sont étudiées pour trouver les effets des grands, mais finis, nombres de Rayleigh. Des résultats sont

obtenus pour les deux cas dans lesquels la plaque plane est (1) isotherme et (2) a flux uniforme. On trouve

que les solutions de couche limite de premier ordre surestiment le nombre de Nusselt local excepté pour
des distances le long de la plaque, a flux uniforme, inférieures a 0,4d environ.

FREIE KONVEKTION AN EINER HALBUNENDLICHEN SENKRECHTEN
OBERFLACHE MIT HORIZONTALER BEGRENZUNG IN EINEM POROSEN MEDIUM

Zusammenfassung—Die stationdre freie Konvektionsstromung entlang einer halbunendlichen senkrechten
ebenen Platte in beliebiger Entfernung d iber einer waagerechten Fliche in einem gesittigten pordsen
Medium wird betrachtet. Die Grenzschichtgleichungen erster und zweiter Ordnung und die Gleichungen
fiir den duBeren Bereich, der reibungsfrei betrachtet wird, werden untersucht, um den Eingfluf} von sehr
groBen, endlichen Rayleigh-Zahlen herauszufinden. Ergebnisse wurden fiir den Fall einer isothermen
ebenen Platte und fiir konstante Warmestromdichte berechnet. Die Losungen der Grenzschichtgleichung
erster Ordnung liefern zu hohe Werte fiir die Nusselt-Zahl, aufler fiir den Fall der einheitlichen Wirme-
stromdichte bei Abstinden von der Plattenunterkante von weniger als ungefihr 0,44d.

ECTECTBEHHAS KOHBEKLIMSA B MMOPUCTON CPEJE OT IMOJYBECKOHEYHON
BEPTUKAJILHOW MMOBEPXHOCTU, OTPAHUYEHHON FOPU3OHTANIBHOW CTEHKOM

Anporamns—I[TpoBeneHO HccnenOBaHHE CTAUHOHAPHON €CTECTBEHHOW KOHBeKUMH BOJIM3H mosybecko-
HEYHOM BEPTHKANLHOM IUIOCKOH IUIACTHHBL, KOTOPas MOMEILEHA B HACHILUEHHYIO NOPHCTYIO cpelly, H Ha
NpPOH3BOJBHOM pAacCTOSHUM d OrPaHMYEHa TOPH3OHTAJIbHOM cTeHKoH. [l ompeneneHHs BIHSHUA
BOMbLIKX, HO KOHEYHBIX 3HAYCHHH uuces1 Pajnes ypaBHeHHA MOIpPaHMYHOIO CJIOS MEPBOTO M BTOPOrO
HOpPAAKA PEIAIOTCA COBMECTHO C YPABHEHHSMH JUIS BHELUHErO TEHCHHS HEBA3KOH XKHIKOCTH. Pesynb-
TaThl MOJYYEHB! I JBYX Cy4aeB, KOrja IUIOCKas MiacTuHa (i) u3oTepMudHa M (ii) Ha Heli monnepku-
BAETCH OAHOPOAHMKIHA TemoBoM moTok. HalineHo, YTo pelleHNs ypapHEHHH IOTPAHAYHOTO CJIOS MIEPBOro
nopsaaKka JaOT 3aBBILICHHbIC 3HA4YCHHA MeCTHOTO uHcna HyccenbTa, kpoMe paccTosHui, MEHbIIMX NpuG-
nH3UTeNLHO 0,4d, ANA NJACTHHBI C OJHOPOAHBIM TEIUIOBBIM MMOTOKOM.



