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Abstract-A study of the steady free convection flow along a semi-infinite vertical flat plate which is placed 
in a saturated porous medium and at an arbitrary distance d above a horizontal wall is performed. The 
first- and second-order boundary layer equations and outer inviscid flow equations are studied to find the 
effects of large, but finite, values of the Rayleigh number. Results are obtained for the two cases in which 
the flat plate is (i) isothermal and (ii) uniform flux. It is found that the first-order boundary layer solutions 
overestimate the local Nusselt number except for the uniform flux plate for distances along the plate less 

than about 0.4d. 

1. INTRODUCTION 

PROBLEMS of natural convection in porous media have 
become of considerable interest during the last two 
decades. This has been mainly due to its wide engin- 
eering applications such as geothermal energy 
resource and oil-reservoir modelling and in the analy- 
sis of insulating systems. An excellent review of these 
types of problems can be found in Bejan [l]. 

Much work in this area has been devoted to the 
analytical studies of higher-order boundary layer 
effects from heated surfaces based on the method of 
matched asymptotic expansion. Cheng and Hsu [2] 
and Joshi and Gebhart [3] have obtained higher-order 
corrections for the free convection boundary layer 
flow adjacent to a semi-infinite vertical flat plate which 
is embedded in a saturated porous medium. This flow 
configuration has been recently extended by Daniels 
and Simkins [4] who investigated the flow in a corner 
which is formed by a uniformly heated vertical surface 
and a second, thermally insulated wall which meets 
the vertical wall at the origin. Further Hsu and Cheng 
[5] have considered free convection about a semi-infi- 
nite inclined heated surface which intercepts with 
another unheated surface embedded in a porous 
medium. The same method was applied by Riley and 
Rees [6] to the problem of non-Darcy natural con- 
vection from an arbitrarily inclined heated surface in 
a porous medium. 

The problem considered here is the steady free con- 
vection flow along a semi-infinite vertical flat plate 
which is placed at a distance d above an insulated 
horizontal infinite wall which is immersed in a satu- 
rated porous medium. In spite of its relevance to many 

practical situations, this configuration has not been 
previously analysed. The only related work to this 
problem is that performed by Martynenko et al. [7] 
who investigated the situation of a viscous fluid. We 
shall consider two natural convection flows separ- 
ately, namely, (i) an isothermal flat plate and (ii) a 
uniform flux flat plate. Both cases are analysed by 
the method of matched asymptotic expansions. The 
perturbation parameter is the inverse of the square 
root of the Rayleigh number which is assumed to 
be large in order to ensure the existence of the free 
convection boundary layer. It is found that the 
second-order boundary layer equations reduce to a 
set of non-similar equations. These equations have 
been solved numerically for small and large values of 
the coordinate along the plate in order to provide 
descriptions of the velocity and temperature fields. 
These limiting solutions are matched using a numeri- 
cal procedure to solve the full governing parabolic 
partial differential equations. It was noted that the 
outer flow and the boundary layer flow patterns are 
considerably different in the two problems considered 
in this paper. This work is analogous to the viscous 
flow induced by a horizontal line source of heat which 
is bounded by a horizontal infinite wall as studied by 
Riley [8] and Afzal [9]. 

2. PHYSICAL MODEL AND ANALYSIS 

The configuration considered is that of a semi-infi- 
nite vertical flat plate which is embedded in a saturated 
porous medium and placed at a distance d above an 
infinite horizontal wall (see Fig. 1). The vertical plate 
is kept at a constant temperature, T,, which is higher 
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d shortest distance from the plate to the Greek symbols 
horizontal wall equivalent thermal diffusivity 

g acceleration due to gravity ; coefficient of thermal expansion 
k thermal conductivity of the porous & perturbation parameter 

medium ul similarity variable 
K permeability of the porous medium e dimensionless temperature 

N% local Nusselt number kinematic viscosity 

4w local heat transfer rate ; dimensionless stream function 
Ra, local Rayleigh number II; dimensionless outer stream function. 
Tw, To surface and ambient temperatures 
(x, y) dimensionless coordinates 
Y dimensionless inner coordinate. 

CT, - T,, for the isothermal plate 

Saturated 
porous medium 

7//,//L,,,,,,,,/ 

Iosuiated wall 

FIG. 1. Physical model and coordinate system. 

than that of the temperature of the ambient fluid- 
porous medium, To, or at a constant flux, qw, whilst 
the horizontal wall is maintained at the constant tem- 
perature To. 

Cartesian coordinates (X, j) are used in the sub- 
sequent analysis in which 2 and 7 are measured along 
and perpendicular to the plate, respectively. The ori- 
gin of the coordinate system is taken to coincide with 
the leading edge of the plate. We assume that the 
thermal and fluid-porous medium properties to be 
constant and neglect the viscous dissipation. Under 
steady-state conditions the mass, momentum and 
energy equations, with the Darcy-Boussinesq 
approximation describing the natural convection flow 
along the vertical plate can easily be obtained. These 
equations for the stream function I/J and the tem- 
perature 8 can be written in non-dimensional form as 

PI 

where E = Ita-“’ and Ra denotes the Rayleigh num- 
ber which is based on the distance d, Ra = gjXAXd/ 
(av). In equations (1) and (2) the streamfunction is 
non-dimensionalized by gflKATd/v, the lengths by d 
and the temperature by AT where 

AT= 
I q,W Ra”2), for the uniform flux plate. (3) 

The associated boundary conditions of the plate 
described above take the following form : 

$.Z = 0, 0 = 1 (constant 
temperature) 

or at y=O, x,&O (4a) 

80, = - 1 (constant 
heat flux) 1 

$_” --f 0, f? + 0 as y-+cc, x30 (4bf 

I&,, = 0 = ii/X = 0, at y = 0, x < 0. (4c) 

In the limit of very large Rayleigh number, or small 
E, the governing equations (1) and (2) reduce to the 
boundary-layer equations, i.e. the first-order inner 
problem, and these equations have been solved pre- 
viously by Cheng and Minkowycz [lo]. The solution 
for large, but finite, values of the Rayleigh numbers 
is not found by means of a standard perturbation 
analysis which assumes a power-series expansion in E 
in both the inner and outer regions. 

2.1. The inner expansion 
The stream and temperature functions in the 

boundary layer are postulated as 

$GY,E) = 41jfl(x, Y)+e$& Y)+h.o.t.f (sa) 

@(x,y,~) = 0,(x, Y)+E&(x, Y)+h.o.t. (sb) 

where the inner variable, Y, is 

Y = y/e (6) 

(the possibility of eigenfunctions will be considered 
later). Substitution of expansions (5) into equations 
(1) and (2) and collecting up terms of equal order in 
E will result in the perturbation equations. The first- 
order perturbation equations resulting from this 
process are 

a”: ti!YY = @,u (7a) 

e Iyy = etxrt,,Y-e,~tx G’b) 
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with the boundary conditions derivatives with respect to q. The problem for (f,,gl) 

Ilrl,(.%O) = 0, Q&GO) = 1 @a) 
has been pre~ously solved nume~cally by Cheng and 
Hsu 121. These calculations have again been performed 

$ I Yk co) + 0, @1(x, 03) --f 0. (8b) and we find that 

We note that equations (7) are the boundary layer constant plate temperature 
equations found by Cheng and Minkowycz [lo] for 
the free convection along a semi-infinite vertical 

a, =f,(co) = 1.6161 
Wa) 

heated vertical plate embedded in a porous medium. g’,(O) = -0.4438; 
The second-order perturbation equations are 

constant heat flux at the plate 
E’: $ -9 2YY-- ZY (9a) b, =f,(co) = 1.3016 

@,, = e,r~~l.+e2.~ICI,Y-e,y1/12x-~2~~,x (9b) 

with boundary conditions 
g; (0) = - 0.6776. 

(18b) 

J/,Jx, 0) = 0 and B2(x, 0) = 0 or @,(x, 0) = 0 
2.4. T~e~rst-order uuter solution 

In the outer region the first-order stream function, 
(10) fl;,, is governed by equation (12) with the matching 

and 1,6~,&c, co) and @,(x,x?) match with the outer 
condition 

expansions which remain to be determined. 
x&O (19a) 

-1 <xi0 (19b) 

2.2. The outer expansion 
In the outer region the flow is irrotational and iso- 

thermal, that is 0 F 0, and thus the following expan- 
sion for the stream function is assumed 

$(x,Y,E) = s[~,(x,V)+&~2(x,Y)+h.o.t.l (11) 

where I,&, satisfies the Laplace equation 

A2$, = 0 (12) 

with the boundary condition ~,(x,O) that matches 
with the inner expansion at the edge of the boundary 
layer, and the infinity condition 

G& co) = 0. (13) 

Solutions of equations (7k(13) will provide a com- 
plete description of the thermal and flow fields to the 
order s2. 

2.3. The first-order inner solution 
The introduction of the similarity transformation 

+I =x’“+‘)‘%(~), Q,(V) =x%,,(?) (14a,b) 

where 

V = yx'"- o/2 
WI 

as suggested by Cheng and Minkowycz [lo] allows 
equations (7) to be reduced to the set of ordinary 
differential equations 

(16a) 

#+ (A+ 1) 
1 -+-is; -/zf;s, = 0 t16b) 

subject to the boundary conditions 

f,(O) = g,(O)- 1 = iI, = 0. (17) 

In the above 1 = 0 corresponds to the constant plate 
temperature problem whilst A. = l/3 corresponds to 
the constant heat flux at the plate. Here primes denote 

and the infinity condition (13). An additional require- 
ment is that the bounding horizontal wall is a stream- 
line, as no boundary layer is formed on this wall, and 
it may be expressed as 

C,(x = 1,Y) = 0, lyl 2 0. (20) 

An analytical solution to equation (12) subject to 
boundary conditions (13), (19) and (20) can be 
obtained, for both the cases under consideration here, 
of the form 

@, sin ~~~) =f,(co) ( (xzi-yZ)‘“+ ‘V4 

xsin (ltan-l 
[ 

’ - 
2 (x+2) II . (21) 

From now on we will consider separately the cases 
of the isothermal plate and the uniform flux plate, 
respectively. 

(i) isothermalplate. The matching of the inner and 
the outer expansions requires that 

c&(x, co) = 0 Wb) 

which suggests a solution of equations (9) in the inner 
region, of the form 

$2 = F(x, q), e2 = x- “‘G(x, PJ). (23a,b) 

Thus the governing equations become 

F” = G’ (24a) 

1 I G”+ 2 (.I-&) = x (24b) 
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which have to be solved subject to the boundary con- 

ditions 

F(x, 0) = G(x, 0) = 0 (25a) 

G(x, 03) = 0. 

G’5b,c) 

We see that equations (24) are non-similar and 
therefore their solution is obtained in terms of two 
coordinate expansions which are valid for small and 
large values of x, respectively. 

(a) Small values of x. For x << 1, the formal expan- 
sion of F’(x, co) is 

where 

F’(x, co) = 2 Yl,x+ I’* (26) 
n=O 

W/2) 
An = - 2”uf:!2 l-(1 +n)I-(1/2-n) 

(27) 

and I- is the Gamma function. Guided by the expan- 
sion (26), we write 

F = f F&&x”+ “2 (284 
n=O 

G = f G,(r/)Y+ “2 (28b) 
n=O 

so that the system of partial differential equations (24) 
can be reduced to the system of ordinary differential 
equations 

F,” = G; (294 

G;‘++f,G;-nf;G,+(++n)g;F, = 0. (29b) 

Boundary conditions (25) become, on using 
expressions (26) and (27) 

F,(O) = G,,(O) = 0 (304 

F;(co) = A,,, G,(O) = 0. (3Ohc) 

(b) Large values of x. For x >> 1, the asymptotic 
form of F’(x, oo) may be expressed in inverse powers 
ofxas 

F’(x,co) = -~a,+O(l/x)’ (31) 

and therefore the asymptotic forms for F and G are 

F= &)+0(1/x) (32a) 

G = G”(r/)+O(l/x) (32b) 

as x -+ co. On substitution of expressions (32) into 
equations (24) and equating order one terms gives 

pr = @ (33a) 

P+:(f,c”)’ = 0 (33b) 

with the boundary conditions 

P(0) = G(0) = 0 (34a) 

P(cc) = -:a,, G”(co) = 0. (34bc) 

It is observed that equations (33) and boundary 
conditions (34) are identical to those derived by Dan- 
iels and Simkins [4] in their study of free convection 
flow in a corner which is embedded in a porous 
medium. The solution of equations (33) subject to the 
boundary condition (34) is 

P+ -l,u,q, G”=o. (35) 

(c) Moderate values of x. A standard CrankkNicolson 
type solver is used to solve the parabolic partial 
differential equations (24) subject to boundary con- 
ditions (25). The method starts with the solution 
which is valid for small values of x and marches in x 
until the asymptotic solution for large x is obtained. 

(ii) Uniform J%X plate. The solution procedure for 
this problem, in essence, parallels that of the preceding 
case. Now, from equation (21), we obtain 

If&,(x, 0) = ix- “3b, cot ($[l+J’]. 
(36) 

It is observed, from expression (36) that the dis- 
placement speed becomes zero at x = x, where x, is 
given by 

x, = 2/l. (37) 

Therefore, the nature of the flow at the edge of the 
boundary layer changes depending upon the value of 
x. For x < 2/7 the displacement speed is positive; at 
x = 2/7, the displacement speed is zero and the first- 
order contribution vanishes ; for x > 2/7, the dis- 
placement speed is negative. 

As before, the second-order boundary layer equa- 
tions (9) in terms of the variable 

ti2 = &x, I?), 0, = x- ‘/‘G(x,,) (38a,b) 

reduce to equations similar to equations (24) and are 
therefore not presented here. However, the functions 
P and G take the following forms : 

for small values of x 

fi =f2(4 + 2 F,,(rlb”+ “3 
“=O 

(394 

6 = g*(q)+ f G,(q)f+ “3 
n=O 

Wb) 

where p(x, co) behaves as 

P(x, co) = B,t- f 2,x.+ “3 
n=O 

(40) 

with 

(414 B, =;b,cot ; 
0 

I(l/3) 
r(i+n)r(i/3-n)i 

(4lb) 
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for large values of x 

P= &)+0(1/x) 

e = ~(~)+~(l~x) 

(42a) 

(42b) 

where 

&x,co) = -B,f0(1/x). (43) 

Equations for Fand G are identical to the equations 
for fZ and g2 which have to be solved for the same 
boundary conditions except for a different sign in 
conditions at q = co. Thus it is concluded that 

“j;(o) = --P(O) = 0.1677, g*(O) = -E = -0.3333. 

(44) 

For moderate values of x a numerical procedure, 
similar to that described for the isothermal. plate prob- 
lem, is again employed. 

In order to complete the solution of this problem 
we must search for the existence of the eigenfunctions 
which identically satisfy the boundary conditions at 
q = 0 and CC. But, as in the problem of free convection 
along a single-semi-infinite vertical plate which is 
embedded in a porous medium, the eigensolutions 
associated with equations (5) introduce a term which 
lies between the second- and third-order approxi- 
mation in each of the series. It is therefore concluded 
that the boundary layer expansions (5) are appro- 
priate up to order a’. 

3. RESULTS AND DISCUSSION 

The primary importance in this problem is the fluid 
flow pattern and the variation of the Nusselt number 
with the distance along the plate. A set of streamlines, 
deduced from expression (21), corresponding to both 
the isothermal plate and the uniform flux plate are 
shown in Figs. 2 and 3, respectively. The effect of the 
solid horizontal boundary at x = - 1 is to prevent 
fluid being entrained into the boundary layer from 
the region x < - 1 and although schematically the 
streamlines are similar in the two problems they are 
very different in detail. 

In the case of the uniform flux plate it is observed 
from Fig. 3 that $,v, at y = 0, x > 0, is negative near 
x = 0 but becomes positive as x increases. The tran- 
sition from negative to positive values occurring at 
x = x, = 2/7, as predicted by equation (37). In the 
isothermal plate case Fig. 2 shows that $ ,Y, at y = 0, 
x > 0, is always positive as indicated by equation 
(22a). Further, since the flux of fluid entering the 
boundary layer is larger for the uniform flux plate 
than the isothermal plate then the strength of the ff ow 
outside the boundary layer must be greater. This is 
confirmed by an examination of expression (21). 
Therefore the fluid, for the uniform flux plate, has to 
enter the boundary layer much more rapidly than 
for the isothermal plate problem. This results in the 
streamlines being more horizontal for the uniform 
flux plate than for the isothermal plate. This result is 
confirmed by the streamline patterns in Figs. 2 and 3. 

The local Nusselt number for small values of x can 
be expressed as 

for (i) : Nux/Ra:‘2 = 0.4438 

- Ra; ‘/’ f G:(O)X”+ li2+ 0(&z; ‘) (45a) 
t*= 0 

for (ii) : NuX/(Nz&~. = I+ 3;; 

x 
i 
g2(0)i- -f G,(O)X"+"~ I + O(Ra; ‘) (45b) 

n=O 

where g’,(O) = -0.6776 and g*(O) = -0.3333. In the 
above (Nu&_, denotes the local Nusselt number for 
the first-order boundary layer solution. The results to 
n = n,, = 14 terms for G:(O) and G,(O) are given in 
Table 1. 

For large values of x, the results for the leading 
terms in the expansions are 

for (i) : Nu,/Ra.J’2 = 0.4438 -t O(Ra; ‘) WW 

-I’,,,, / ,,,,,,,, / ,,,,,,,, ,,, , , 

FIG. 2. The streamlines associated with the outer flow for an isothermal plate. 
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-! / /////i///////////////////f/// 

FIG. 3. The streamlines associated with the outer flow for a uniform flux plate. 

Table 1. Second-order solution for small x 

n A” Gb(O) All G,(O) 
__-. 

0 -5.7139x 10-I 2.1477 x lo-’ - 7.9528 x IO- ’ 4.7933 x lo-’ 
1 1.4285 x 10-l -7.2668 x lo-’ 1.3253 x lo- ’ -6.3253 x lo-’ 
2 -5.3567 x IO-’ 2.8271 x lo-” -4.4182 x 10-r 1.7741 x10-2 
3 2.2320 x IO-* -1.1785x lo-* 1.7182x IO-* -6.0274x lo-’ 
4 -9.7649x W3 5.1174x 1o-3 -7.1592x lO-3 2.2498 x 10-s 
5 4.3942 x lo- 3 - 2.2825 x lo- 3 3.1023 x lO-3 -8.8907 x lo-4 
6 -2.0140x lo-’ 1.0373 x lo-3 - 1.3788 x lo-’ 3.6512 x 1O-4 
7 9.3508 x 10m4 -4.7789 x lO-4 6.2375 x 1O-4 -1.5417x lo-4 
8 -4.3832 x lO-4 2.2248 x lo-* -2.8588 x 1O-4 6.6477 x lO-5 
9 2.0698 x IO-“ -1.0443 x 1o-4 1.3235 x 1O-4 -2.9139 x IO-’ 

10 -9.8137 x lo-’ 4.9338 x IO-’ -6.1765 x 1o-i 1.2942x lo-’ 
11 4.6924 x lo-’ -2.3435 x lO-5 2.9011 x lO-5 -5.8105 x lO-6 
12 -2.2484 x lo-’ 1.1182x IO-’ -1.3700x lo-5 2.6324 x 1O-6 
13 1.0810 x IO-’ -5.3551 x lo-& 6.4985 x lo- 6 -1.2017x lO-6 
14 -5.2119~10-~ 2.5729 x lO-6 - 3.0945 x lo-$ 5.5219 x IO-’ 

.-_____ 

= l-0.4919&2; I”+ O(Ra, ‘). (46b) 

Figure 4 shows the variation of the second-order 
boundary layer correction to the local Nusselt 
number, (Nu,/Raj” -0.4438)Ra~“, as a function of 
the distance along the plate, x, for the isothermal plate 
problem. For large values of x the complete numerical 
solution tends to the asymptotic value of zero as pre- 
dicted by equation (46a). At small values of x the 
effects of taking an increasing number of terms in 
expansion (45a) is shown. Clearly we do not expect 
the asymptotic solution for small values of x to be 
valid for x > 2 because of the use of expansion (26). 

The full numerical solution gives excellent agreement 
with the series solution (45a) for .x 5 1.5. 

Figure 5 shows the variation of the second-order 
boundary layer correction to the local Nusselt 
number, (Nu~l(Nu~)~,~,- l)RuJ”, as a function of the 
distance along the plate for the uniform flux plate. As 
in the case of isothermal plate problem it is observed 
that the complete numerical solution matches the 
asymptotic solutions (45b) and (46b). Similar obser- 
vations as were made above for the isothermal plate 
also apply in this case. 

It is concluded that the first-order boundary layer 
solution always overestimates the Nusselt number in 
the case of the isothermal plate. However, for the 
uniform flux plate the first-order boundary layer solu- 
tion underestimates the Nusselt number for x 5 0.4 
and overestimates it for x 2 0.4. 

Higher-order corrections to the boundary layer 
solutions can easily be obtained using the method of 
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FIG. 4. The variation of (Nu,Ra:‘2 -04438)fza:‘* as a function of x for the isothermal plate. The number 
of terms used in series (4%~) being 0, 14, 12, 10, 8,6,4 and 2 for curves going to plus infinity, reading from 
left to right and being 13, 11, 9, 7, 5, 3 and 1 for curves going to minus infinity, again reading from left to 

right. 

FIG. 5. The variation of ((Nux/Nu~),,- l)Ra, as a function of x for the uniform flux plates. The number 
of terms used in series (45b) being 13, 11, 9, 7, 5, 3 and 1 for curves going to plus infinity, reading from 
left to right, and being 14, 12, 10, 8, 6, 4, 2 and 0 for curves going to minus infinity, reading from left to 

right. 

matched asymptotics as described above. However, in 
the non-porous media situation this is not possible as 
a viscous boundary layer forms on the horizontal 
surface and this must also be analysed. Also due to 
the formation of the boundary layer a jet will form 
near y = 0, - 1 < XC 0 which will then interact with 
the higher-order corrections in the boundary layer on 
y = 0, x > 0. In the porous media problem no viscous 
or thermal boundary layers exist on the horizontal 
boundary at x = - 1 and this boundary is only play- 
ing a passive role in that it only serves as a boundary 
condition for the outer inviscid flow. 
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CONVECTION NATURELLE SUR UNE SURFACE VERTICALE SEMI-INFINIE 
LIMITEE PAR UNE PAR01 HORIZONTALE DANS UN MILIEU POREUX 

R&sum&On ttudie la convection naturelle permanente le long dune plaque plane, verticale semi-infinie 
qui est placee dans un milieu poreux a une distance arbitraire d au-dessus dune paroi horizontale. Les 
equations de couche limite de premier et de second ordre et les equations de I’ecoulement non visqueux 
externe sont Ctudiees pour trouver les effets des grands, mais finis, nombres de Rayleigh. Des rbsultats sont 
obtenus pour les deux cas dans lesquels la plaque plane est (1) isotherme et (2) a flux uniforme. On trouve 
que les solutions de couche limite de premier ordre surestiment le nombre de Nusselt local except& pour 

des distances le long de la plaque, a flux uniforme, inferieures a 0,4d environ. 

FREIE KONVEKTION AN EINER HALBUNENDLICHEN SENKRECHTEN 
OBERFLACHE MIT HORIZONTALER BEGRENZUNG IN EINEM PORdSEN MEDIUM 

Zusammenfassung-Die stationare freie Konvektionsstriimung entlang einer halbunendlichen senkrechten 
ebenen Platte in beliebiger Entfernung d iiber einer waagerechten Flache in einem geslttigten poriisen 
Medium wird betrachtet. Die Grenzschichtgleichungen erster und zweiter Ordnung und die Gleichungen 
fur den iul3eren Bereich, der reibungsfrei betrachtet wird, werden untersucht, urn den EingfluB von sehr 
groBen, endlichen Rayleigh-Zahlen herauszufinden. Ergebnisse wurden fiir den Fall einer isothermen 
ebenen Platte und fiir konstante Warmestromdichte berechnet. Die Liisungen der Grenzschichtgleichung 
erster Ordnung liefern zu hohe Werte fur die Nusselt-Zahl, aul3er fiir den Fall der einheitlichen Wlrme- 

stromdichte bei Abstlnden von der Plattenunterkante von weniger als ungefahr 0,4d. 

ECTECTBEHHAX KOHBEKLH#l B IIOPMCTOR CPEAE OT I-IOJIYEECKOHE’IHOI? 
BEPTAKAJIbHOfi I-IOBEPXHOCTH, 01-PAHMsEHHOR I-OPR30HTAJIbHOI? CTEHKOlii 

AllEOTalUl8-HpOBeAeHO H03JreAOBaHHe CTaUHOHapHOi? e%TeCTBeHHOii KOHBeKl@iH B6JiR38 nony6ecro- 
HeqHOii BepTHKUbHOii MOCKOfi nJlaCTHHbl,KOTOpaK nOMeUleHa I3 HaCbIWeHHylO nOpHCTyEOCpelly,H Ha 

npOH3B0,IbHOM paCCTORH&iH d OrpaHWIeHa rOpH30HTaJIbHOii CTeHKOii. &In OnpeAeJIeHNI BJIW4HHll 

6onbluex, HO KOHeYHbIX 3Ha',eH&lfi %NZeJl P3JIeS ypaBHeHHH nOrpaHWfHOr0 C."OIl nepBOr0 A BTOpOrO 

nopanxa pemarorcr COBM~CTHO c ypaBuennnMa nnn mieumero reqemia nenn3KoB ~HAKOCTA. Pe3ynb- 
rarbi nonyqeribt nmt AB~X cnysaes, Korna nnocxaa nnacrmia (i) a30rephra9ua II (ii) Ha neil nonaepxta- 
BaeTcs 0nHoponHbIl rennoaoti noToK.HafiAeHO,~To perueHAnypaBHeHkiii norpaHaqHor0 cnoa nepsoro 

nOpnAKaAaEOT3aBbIIUeHHbre3Ha4eHwa MeCTHOrOYBCJla HyCCeJIbTa,KpOMepaCCTOKHHti,MeHbUUiX npeB 
na35iTenbHo 0,4d, nnn nnacrkiHb~c0~~0p0~HbwTennoBb~Mn0~0K0M. 


